Yiming Meng
Yiming Meng
Home
News
Research
Publications
Teaching & Service
Contact
Paper-Conference
Physics-Informed Neural Network Policy Iteration: Algorithms, Convergence, and Verification
Y. Meng
,
R. Zhou
,
A. Mukherjee
,
M. Fitzsimmons
,
C. Song
,
J. Liu
Project
Compositionally Verifiable Vector Neural Lyapunov Functions for Stability Analysis of Interconnected Nonlinear Systems
J. Liu
,
Y. Meng
,
M. Fitzsimmons
,
R. Zhou
PDF
Cite
Project
Zubov-Koopman Learning of Maximal Lyapunov Functions
Y. Meng
,
R. Zhou
,
J. Liu
PDF
Project
LyZNet with Control: Physics-Informed Neural Network Control of Nonlinear Systems with Formal Guarantees
J. Liu
,
Y. Meng
,
R. Zhou
Project
LyZNet: A Lightweight Python Tool for Learning and Verifying Neural Lyapunov Functions and Regions of Attraction
J. Liu
,
Y. Meng
,
M. Fitzsimmons
,
R. Zhou
PDF
Cite
Project
Towards Learning and Verifying Maximal Neural Lyapunov Functions
J. Liu
,
Y. Meng
,
M. Fitzsimmons
,
R. Zhou
PDF
Cite
Project
DOI
Asymptotic Approximation of the Maximal Lyapunov Exponent of Moore-Greitzer PDE model with Multiplicative Noise close to Stall Bifurcation
Y. Meng
,
N.S. Namachchivaya
,
N. Perkowski
PDF
Project
Data-Driven Learning of Safety-Critical Control with Stochastic Control Barrier Functions
Equal Contribution
C. Wang
,
Y. Meng
,
S.L. Smith
,
J. Liu
PDF
Cite
Project
DOI
Robustly Complete Finite-State Abstractions for Verification of Stochastic Systems
Y. Meng
,
J. Liu
PDF
Cite
Project
DOI
Sufficient Conditions for Robust Probabilistic Reach-Avoid-Stay Specifications using Stochastic Lyapunov-Barrier Functions
Y. Meng
,
J. Liu
PDF
Cite
Project
DOI
»
Cite
×